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ABSTRACT End-of-life disassembly has developed into a major research area within the sustainability paradigm, 

resulting in the emergence of several algorithms and structures proposing heuristics techniques such as Genetic 

Algorithm (GA), Ant Colony Optimization (ACO) and Neural Networks (NN). The performance of the proposed 

methodologies heavily depends on the accuracy and the flexibility of the algorithms to accommodate several factors 

such as preserving the precedence relationships during disassembly while obtaining near-optimal and optimal 

solutions. This paper improves a previously proposed Genetic Algorithm model for disassembly sequencing by 

utilizing a faster metaheuristic algorithm, Tabu search, to obtain the optimal solution. The objectives of the proposed 

algorithm are to minimize (1) the traveled distance by the robotic arm, (2) the number of disassembly method 

changes, and (3) the number of robotic arm travels by combining the identical-material components together and 

hence eliminating unnecessary disassembly operations. In addition to improving the quality of optimum sequence 

generation, a comprehensive statistical analysis comparing the previous Genetic Algorithm and the proposed 

Tabu Search Algorithm is also included. 
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INTRODUCTION 

 

Products in today’s market can be generally classified into two categories: efficient and responsive. Efficient 

products are considered to have a stable and constant demand, supply, pricing, and they tend to move slowly in 

the supply chain. However, the demand, supply and price for responsive products fluctuate often and these 

products are characterized by relatively larger profit margins due to their time sensitive nature. This sensitivity 

requires them to move faster in the forward supply chain to ensure customer satisfaction. With similar logic, the 

useful life time of responsive products tend to be much shorter than their efficient counterparts due to macro 

environmental changes, viz., globalization and technological advances. Therefore, reverse distribution systems 

become instrumental in retrieving these products from the market for subsequent reuse, recycling, or proper 

disposal. Within responsive products, electrical and electronic equipment (EEE) is the largest growing waste 

stream requiring economically and environmentally solid and efficient reverse logistics and supply chain 

operations. EEE uses large quantities of natural resources including substantial amounts of precious metals such 

as gold, silver, and copper during their production. Furthermore, EEE is composed of several components and 

subassemblies that can be reused even if the whole product might not be technologically valid. Together with the 

precious material content, the functionality of these partial structures makes recycling and reuse activities 
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economically valid. Reuse, recycling, or proper disposal of any product generally requires disassembly of the 

end-of-life product. The efficiency of disassembly operations is a crucial factor in the success of any reverse 

flow. Since using human labor to disassemble these products adds more cost and time to the overall system, the 

need for utilizing automated solutions become apparent. In addition, the process of disassembly is complicated 

and carries various risk factors due to the hazardous substances embedded in these products. In some instances, 

disassembly is also required to replace or fix components that are not accessible by humans, making robotic 

solutions to the problem the only alternative. 

 

The problem of generating an optimal sequence for disassembly operations is rather challenging due to the 

uncertainty of the process. EEE is subject to various changes in their original bill-of-materials due to 

technological advances. For instance, a component inside a personal computer may be altered over time due to an 

upgrade or a change, such as replacing the RAM capacity. Another, perhaps more important, challenge that 

contribute to the complication of disassembly operations is the fact that the majority of products are not designed 

for disassembly; thus requiring destructive disassembly operations in some instances and prohibiting the reuse of 

still functioning components.  

 

This paper aims at handling the uncertainty and aforementioned challenges via introducing two modules: A 

sensory system and an online Tabu search algorithm. The sensory system is used to identify the depth of the 

product with the help of a digital camera capturing product images for processing and detecting the components. 

The Tabu search algorithm then generates an optimum online real time disassembly sequence using this 

information, hence overcoming the uncertainty in the product structure.  
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Figure 1. Bill-Of-Materials (BOM) for the EOL product 

Figure 1 demonstrates the bill of materials (BOM) of the end-of-life product and depicts the product structure 

used in this paper. The proposed solution includes a robotic manipulator with a digital camera and utilizes range 

sensing and component segmentation algorithms. Table 1 lists all the components in the product including their 

material content and the required disassembly operation (destructive (D) or non-destructive (ND)). 
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The Tabu Search (TS) algorithm utilized in this paper was first proposed by Fred Glover [1] in 1986 to overcome 

the Local Optimal Search (LS) problem and enabling global Optima search. Tabu Search generally includes two 

memories, namely, short and long term memory. The short term memory prevents the reversal of the recent 

moves. The long term frequency memory reinforces attractive components, forcing the algorithm to move 

towards more preferable solutions. The algorithm also generates a Tabu list prohibiting returns to previously 

searched paths. Tabu Search is an extension of classical LS methods. In fact, basic TS can be seen as simply the 

combination of LS with short-term memories. The recycle back in the moves is prevented by using the memories 

(Tabu Lists). It follows that the two first basic elements of any TS heuristic are the definitions of its search space 

and its neighborhood structure [1]. 

 

 

Table 1. End-of-life Product Components, Material Content and Required Disassembly Techniques 

 

Component 

Number 
Description Material 

Disassembly 

Method 

0 Robot reference point   

1 Side cover Aluminum (A) D 

2 Power supply Copper(C) D 

3 Sound card Plastic (P) ND 

4 Modem card Plastic (P) ND 

5 CPU Plastic (P) ND 

6 Hard drive Aluminum (A) ND 

7 CD drive Aluminum (A) ND 

8 Zip drive Aluminum (A) ND 

9 RAM Plastic (P) ND 

10 Drives slot Aluminum (A) D 

 

LITERATURE REVIEW AND BACKGROUND 

 

Evolutionary algorithms have been recognized to be well-suited to multiobjective optimization since early in their 

development [2]. Given that the EOL disassembly embodies several objectives to ensure its efficiency, 

multiobjective evolutionary algorithms have been extensively used for the EOL disassembly scheduling and/or 

sequencing problems [3]. 

 

Kongar and Gupta [4] considered the case of complete disassembly utilizing both destructive and non-destructive 

methods. Their paper presented an algorithm for establishing partial and non-destructive disassembly sequences 

of products, where the recycling and industrial maintenance requires a non-destructive methodology for 

automatic disassembly. Furthermore, the authors introduced a new representation for the component included in 

the disassembly based on assemblies of components, not the material. Their method helps in finding the optimum 

disassembly sequence faster within the process of disassembling products, based on the information from the 

design process. Therefore, the algorithm could be used in new product design as well as for recycling and product 

maintenance.  

McGovern and Gupta [5] focused on the disassembly line balancing problem aiming at increasing the process 

productivity while reducing the number of workstations used. To achieve this, their work utilized a genetic 

algorithm to obtain the optimal or near-optimal solution for the disassembly sequencing.  
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ElSayed et al. [6] used a Genetic Algorithm with precedence preservative crossover (PPX) to find the optimum or 

near-optimum disassembly sequence for complete disassembly The objective of the proposed GA is to minimize 

the total fitness function by minimizing (i) the traveled distance, (ii) the number of disassembly method changes, 

and (iii) by combining the identical-material components together, eliminating unnecessary disassembly 

operations. Following this, a roulette wheel is employed to select the sequence of parents in the next generation. 

The objectives include, (1) minimizing the number of workstations and hence, minimizing the total idle time, (2) 

ensuring workstation idle times are similar, (3) removing hazardous parts early in the disassembly sequence, (4) 

removing high-demand parts before low-demand parts, and (5) minimizing the number of part removal direction 

changes required for disassembly. The authors also introduced a new efficiency measurement tool combining 

Line Efficiency (LE) and Smoothness Index (SI).  

Torres et al. [7] proposed a cell with a degree of automation in non-destructive product disassembly. The authors 

also employed computer vision for object detection in addition to a modeling system for the products. The 

modeling system provides information regarding the type of products and the main components of the product 

architecture.  

ElSayed et al. [8] proposed an online Genetics Algorithm (GA) that aims at handling uncertainty in the EOL 

product structure. The algorithm consists of two modules: (i) a sensory-driven visual and range acquisition 

recovery system, and (ii) an online genetic algorithm (GA) model. The object detection converts objects from 3D 

to 2D structures via a camera-based algorithm resulting in 2 
   D images. The proposed algorithm finds the 

optimal disassembly sequence while reducing the time required to disassemble the product. 

Xing et al. [9] conducted a survey that reviews the application of soft computing to remanufacturing. The survey 

aimed at finding answers to various remanufacturing software questions such as the main problems within 

remanufacturing systems and existing remanufacturing techniques. The survey utilized the data provided by the 

library of the University of Johannesburg, South Africa. The results were categorized into two basic groups; 

disassembly and remanufacturing.  

 

Kalayci and Gupta [10] introduced a Tabu Search (TS) algorithm to solve the Disassembly Line Balancing 

Problem (DLBP) with multiple objectives. The DLBP described in the paper consists of multiple objectives 

requiring the assignment of disassembly tasks to a set of ordered disassembly workstations while satisfying the 

disassembly precedence constraints and optimizing the effectiveness of several measures. The authors aimed at 

reducing the number of disassembly steps required to minimize the total idle time for all workstations. They also 

assigned the removal of hazardous and high demand components maximum priority. 

 

Torres et al. [11] proposed two types of cooperation among robot arms aiming to manage the task between 

multiple robots. In the first cooperation, two or more robots cooperate to achieve the same task. In the second 

type, several tasks are achieved by different robots at the same time. The entire design was built based on a 

decision tree. The main goal in their follow up work [12] is to retrieve materials from the EOL product via 

destructive disassembly.  

 

Kuren [13], to find an optimum disassembly path for EOL products, proposed a disassembly cell prototype and 

presented a case study for mobile phone disassembly. Since a destructive method was used in this paper, the need 

to used precedence relationships has been eliminated in the proposed solution. 
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This work is a follow up on the algorithms in Kongar and Gupta [4]. The proposed genetic algorithm includes 

PPX (Precedence Preservation Crossover) to respect the hierarchical structure of the EOL product. The main 

objective of the algorithm is to minimize the Makespan by minimizing the number of direction changes, 

disassembly method changes and combining the identical-material components. 

 

PROPOSED METHODOLOGY 

 

The proposed algorithm aims at minimizing the uncertainty in the disassembly process via two techniques: (1) A 

sensory system, and (2) an online real-time Tabu Search module. The sensory system consists of a robotic 

manipulator, a digital camera and an image processing algorithm. The camera captures the images of components 

and/or subassemblies accessible at each level (Fig. 1) and identifies the depth of each available entity. The Tabu 

Search (TS) algorithm then uses this information to determine the optimal disassembly sequence for the current 

level. Since the visibility and accessibility of components are altered following each disassembly operation, the 

Tabu Search algorithm seeks another optimal sequence for the newly generated EOL product structure. The 

sensory system captures product images after every removal, providing the Tabu Search algorithm with accurate 

online real-time data. This loop continues until all the components demanded for recycling and reuse are 

removed. Unwanted components are also subject to disassembly, if and only if their removal would lead to 

accessibility of desired components, i.e., the components demanded for reuse or recycling. This condition 

prohibits unnecessary movements and hence reduces the overall Makespan.  

 

The Tabu Search algorithm is motivated by multiple objectives while searching for the best possible sequence 

within each layer. The algorithm ensures that (1) the distance traveled by the robot arm, (2) the number of 

disassembly method changes, i.e., from ND to D or vice versa, and (3) the number of material changes are 

minimized. Objective (3) is achieved by grouping the components that are made out of identical materials and 

increases the overall makespan via a panelizing constant if the following component to be disassembled consists 

of different material. A literature example is considered to demonstrate the functionality of the proposed 

algorithm. 

NUMERICAL METHODOLOGY 

 

The Tabu Search algorithm was applied to the numerical example provided in Table 1 for the product provided in 

Figure 1. One thousand independent runs were completed to test the Tabu Search and to compare the solutions with 

the previously published Genetic Algorithm results provided in Kongar and Gupta [4]. Tabu Search results proved to 

be significantly better than the Genetic Algorithm results.  

 

In order to validate the reliability of results, various statistical test were conducted using SPSS, Excel, Matlab and 

the Arena Simulation software. The SPSS output of the summary statistics for 1,000 random runs for Tabu 

Search (TS) and Genetic Algorithm (GA) are provided in Table 2. The superiority of Tabu Search is clearly 

evident from the table. For example, the median and mode for Tabu Search runs in milliseconds (187.5, 

197.65625) are significantly less than the median and mode of the Genetic Algorithm runs (406.25, 402.9844). 

CONCLUSION 

 

Tabu Search run times are significantly less than Genetic Algorithm run times, hence providing faster solutions to 

the disassembly sequencing problem.  

 

 



6 
 

Table 2. Summary Statistics for Tabu Search (TS) and Genetic Algorithm (GA) Run Times in milliseconds 

 
Tabu Search (TS)  Genetic Algorithm (GA) 

    

Mean 197.65625  402.9844 

Standard Error 2.033077929  1.125706 

Median 187.5  406.25 

Mode 156.25  390.625 

Standard Deviation 64.29156917  35.59795 

Sample Variance 4133.405867  1267.214 

Kurtosis 0.3840795  6.296531 

Skewness 0.95576832  1.572811 

Range 328.125  328.125 

Minimum 78.125  296.875 

Maximum 406.25  625 

Sum 197656.25  402984.4 

Count 1000  1000 

Confidence Level 

(95.0%) 

3.989593024  2.20902 
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